

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 451-460

Trifluoroacetic acid: a more effective and efficient reagent for the synthesis of 3-arylmethylene-3,4-dihydro-1H-quinolin-2-ones and 3-arylmethyl-2-amino-quinolines from Baylis-Hillman derivatives via Claisen rearrangement $\stackrel{\star}{\sim}$

Richa Pathak, Sudharshan Madapa and Sanjay Batra*

Medicinal and Process Chemistry Division, Central Drug Research Institute, PO Box 173, Chattar Manzil Palace, Lucknow 226001, Uttar Pradesh, India

> Received 3 August 2006; revised 6 October 2006; accepted 19 October 2006 Available online 9 November 2006

Abstract—Trifluoroacetic acid has been discovered to be a highly effective and efficient reagent for the tandem Claisen rearrangement and cyclization reaction to vield 3-arylmethylene-3,4-dihydro-1*H*-quinolin-2-ones from compounds obtained from the S_N ² reaction between anilines and acetyl derivatives of Baylis-Hillman adducts of acrylates in the presence of DABCO. In contrast, similar compounds obtained from the acetyl derivatives of Baylis-Hillman adduct of acrylonitrile on treatment with trifluoroacetic acid directly furnish 3-arylmethyl-2amino-quinoline via tandem Claisen rearrangement, cyclization and isomerization.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the compound R207910 (Fig. 1) from Johnson and Johnson has been described to have significant activity against the drug sensitive and drug-resistant Mycobacterium tuberculosis.¹ This compound has been reported to elicit the anti-tubercular activity via a novel mechanistic pathway.² The starting substrate for the synthesis of compound R207910, i.e., 3-arylmethyl-2-chloro-quinoline, is afforded by the reaction between aniline and substituted benzenepropionyl chloride followed by heating of the product with POCl₃.³ During our studies toward the exploitation of Baylis-Hillman chemistry for achieving the synthesis of valued intermediates, it occurred to us that 3-arylmethyl-2-chloroquinolines can be readily synthesized from Baylis-Hillman adducts. Indeed recently, Kim et al. have described elegant synthesis of 3-arylmethylene-3,4-dihydro-1H-quinolin-2one, the precursor for 3-arylmethyl-2-chloro-quinoline, from the acetates of Baylis-Hillman adducts via PPA-mediated Claisen rearrangement.⁴ Although, the yields reported for the sequence were high, problems in handling PPA, particularly on large scale runs, prompted the development of a more convenient yet efficient route. Besides, Kim et al.

Figure 1. Structure of 207910.

were unsuccessful in obtaining quinoline derivatives when the aniline substrate containing the electron-donating groups such as methoxy or methyl was used. Gratifyingly we have discovered that in the presence of TFA, the Claisen rearrangement proceeds smoothly irrespective of the nature of functional groups present in the aniline and can be performed on large scales. The subsequent isomerization was accomplished in the presence of potassium carbonate in acetone. Interestingly the use of these reagents eliminates the need for column chromatography. We describe herein our results on the efficient synthesis of 3-arylmethylene-3,4-dihydro-1H-quinolin-2-one and 3-arylmethyl-2-aminoquinolines.

2. Results and discussion

Synthesis of the title compound is outlined in Scheme 1. In the initial step the Baylis–Hillman adducts 1 from several

^{*} CDRI communication no. 7071.

Keywords: Baylis-Hillman; TFA; Claisen rearrangement; 3-Arylmethyl-3,4-dihydro-1*H*-quinolin-2-one; 3-Arylmethyl-2-amino-quinoline.

^{*} Corresponding author. Tel.: +91 522 2262411-18x4368; fax: +91 522 2623405/938; e-mail: batra_san@yahoo.co.uk

^{0040-4020/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.10.053

Scheme 1. Reagents and conditions: (a) AcCl, pyridine, CH_2Cl_2 , rt, 3 h; (b) substituted anilines, DABCO, THF/H₂O (1:1), rt, 3 h; (c) TFA, 60 °C, 8–14 h; (d) K₂CO₃, acetone, 60 °C, 10–15 min; (e) POCl₃, toluene, 120 °C, 30 min; (f) NaOMe, MeOH, reflux, 15 min. (For R and R¹ refer to Table 1.)

aldehvdes were prepared via DABCO-promoted Baylis-Hillman reactions in the absence of solvent. These adducts were acetylated with acetyl chloride in the presence of pyridine in dichloromethane to yield the acetates 2. Nucleophilic substitution on the acetyl derivatives with anilines in the presence of DABCO led to products 3 in 3 h. Treatment of compounds 3 with neat trifluoroacetic acid at reflux temperature for 8-14 h yielded the 3-arylmethylene-3,4dihydro-1H-quinolin-2-one in good yields. The workup procedure was simple since the evaporation of TFA in vacuo followed by treatment of the residue with saturated sodium bicarbonate gave the products as solids without the need for column chromatography. Subsequent treatment of a few of these compounds with potassium carbonate in acetone at reflux temperature for 10-15 min furnished the isomerized quinolines in almost quantitative yields. During the study several compounds with different ester group were examined and this reaction sequence was found to be general in nature as evident from Table 1. Even the anilines containing methyl or methoxy substitution undergo this reaction, though the yields of the resulting quinolinones were slightly lower. At this stage it occurred to us that a one-pot procedure for

the generation of 3-arylmethyl-1*H*-quinolin-2-one might be possible. Accordingly, in a representative reaction instead of treating the reaction mixture obtained after TFA-promoted Claisen rearrangement with sodium bicarbonate, the residue was taken up in acetone and to it was added excess of potassium carbonate and the mixture was heated at reflux temperature for 10 min. Filtration of the inorganic salts followed by evaporation of excess solvent furnished the pure products as solids. However, the overall yield afforded through this one-pot method was significantly less than that obtained during two-step procedure. Treatment of 3-arylmethyl-1*H*-quinolin-2-one **5** with POCl₃ yielded the 3-arylmethyl-2-chloro-quinolines in excellent yield. During this investigation we found that the treatment of 3-arvlmethylene-3,4-dihydro-1*H*-quinolin-2-ones 4 with $POCl_3$ led to a tandem isomerization and chlorination though here also the yields were less than the two-step process. Unlike the literature report,³ the reaction of 3-arylmethyl-2-chloro-quinolines with sodium methoxide was complete within 15 min to vield the 3-arylmethyl-2-methoxy-quinolines 7–9 in excellent yield, compound 7 being the starting substrate for 207910.

Entry	$HN \xrightarrow{H} EWG$												
	R	R^1	EWG	Yield	R	R^1	Yield	R	R^1	Yield	R	R^1	Yield
1 2 3 4	C ₆ H ₅ (2-Cl)C ₆ H ₄ (4-Br)C ₆ H ₄ C ₆ H ₅	H H H 4-Cl	$\begin{array}{c} CO_2Et\\ CO_2Et\\ CO_2Et\\ CO_2Et\\ CO_2Et \end{array}$	85 80 82 76	$C_{6}H_{5}$ (2-Cl)C ₆ H ₄ (4-Br)C ₆ H ₄ C ₆ H ₅	H H H 6-Cl	88 71 80 88	C ₆ H ₅	Н	99	C ₆ H ₅ (2-Cl)C ₆ H ₄ (4-Br)C ₆ H ₄	H H H	66 ^a 71 ^a 85 ^a
5 6 7	$(2-F)C_6H_4$ $(4-Br)C_6H_4$ C_6H_5	4-Cl 4-Cl 4-F	CO_2Et CO_2Et CO_2Et	81 80 77	$(2-F)C_6H_4$ $(4-Br)C_6H_4$ C_6H_5	6-Cl 6-Cl 6-F	79 85 93	(2-F)C ₆ H ₄	6-Cl	100	(2-F)C ₆ H ₄ (4-Br)C ₆ H ₄	6-Cl 6-Cl	97 82
8 9 10	$\begin{array}{c} (2\text{-}Cl)C_6H_4\\ (4\text{-}Br)C_6H_4\\ C_6H_5 \end{array}$	4-F 4-F 4-Br	CO_2Et CO_2Et CO_2Et	77 86 64	$(2-Cl)C_6H_4$ $(4-Br)C_6H_4$ C_6H_5	6-F 6-F 6-Br	70 76 79	$\begin{array}{c} (2\text{-}Cl)C_{6}H_{4} \\ (4\text{-}Br)C_{6}H_{4} \\ C_{6}H_{5} \end{array}$	6-F 6-F 6-Br	100 100	$\begin{array}{c} (2\text{-}Cl)C_{6}H_{4} \\ (4\text{-}Br)C_{6}H_{4} \\ C_{6}H_{5} \end{array}$	6-F 6-F 6-Br	68 ^a 89 97
11 12 13 14	C_6H_5 C_6H_5 Pyrid-2-yl C_6H_5	2-Me 3,4,5-(OMe) ₃ 4-F 4-Me	CO_2Et CO_2Et CO_2Et CO_2Me	85 65 55 86	C_6H_5 C_6H_5 Pyridy-2-yl C_6H_5	8-Me 5,6,7-(OMe) ₃ 6-F 6-Me	36 63 68 78	CeHe	6-Me	100			
15 16 17 18	$(2-Cl)C_6H_4$ $(2-F)C_6H_4$ $(2-F)C_6H_4$ $(2-F)C_6H_4$	4-Cl H H 4-Cl	CO_2Me CO_2Me CO_2Bu^t CO_2Bu^t	82 88 86 81	$(2-Cl)C_6H_4$ $(2-F)C_6H_4$ $(2-F)C_6H_4$ $(2-F)C_6H_4$	6-Cl H H 6-Cl	70 73 53 85	$(2-Cl)C_6H_4$ $(2-F)C_6H_4$	6-Cl H	100 100			
19 20	$(2-F)C_6H_4$ $(2-F)C_6H_4$	4-F 4-OMe	CO_2Bu^t CO_2Bu^t	81 63	$(2-F)C_6H_4$ $(2-F)C_6H_4$	6-F 6-OMe	85 77	(2-F)C ₆ H ₄	6-F	100	(2-F)C ₆ H ₄	6-F	81

Table 1. Structure and yields of quinolines produced according to Scheme 1

^a Yields of product directly obtained from compound **4**.

Having demonstrated the utility of TFA for Claisen rearrangement for the Baylis-Hillman derivatives of acrylates, we turned our attention to compounds 12 derived from acrylonitrile. It was envisaged that herein the Claisen rearrangement would lead to an intermediate with a free aromatic amino group, which may then attack the cyano group to yield 2-amino quinoline derivatives in a single step. Hence compounds 12 were prepared via the reaction of substituted anilines with the acetates 11 (Scheme 2). Unlike compounds 2, the nucleophilic substitution reaction takes more than 48 h for completion. Similar treatment of these compounds 12 with TFA led to isolation of a product, which was established to be 2-amino-3-benzyl-quinoline 13 on the basis of spectral analysis. It was interesting to note here that the Claisen rearrangement, cyclization and isomerization occurred in one step. This reaction was found to be general in nature.

Scheme 2. Reagents and conditions: (a) AcCl, pyridine, rt, 3 h; (b) substituted aniline, DABCO, THF/H₂O (1:1), rt, 48 h; (c) TFA, reflux, 24 h. (For key to R and R^1 refer to Table 2.)

Table 2. Structure and yields of quinolines produced according to Scheme 2

Entry				$R^1 \xrightarrow{N} NH_2$ 13			
	R	R^1	Yield	R	\mathbb{R}^1	Yield	
1	C ₆ H ₅	4-Cl	82	C ₆ H ₅	6-Cl	28	
2	$2 - F - C_6 H_4$	4-Cl	68	$2 - F - C_6 H_4$	6-Cl	48	
3	$2,4-(Cl)_2-C_6H_3$	Н	73	$2,4-(Cl)_2-C_6H_3$	Н	46	
4	2,4-(Cl) ₂ -C ₆ H ₃	4-Cl	62	2,4-(Cl) ₂ -C ₆ H ₃	6-Cl	53	

3. Conclusions

In summary we have demonstrated that trifluoroacetic acid is an effective and efficient reagent for the synthesis of 3-arylmethylene-3,4-dihydro-1*H*-quinolin-2-ones and 3-arylmethyl-2-amino-quinolines from the derivatives of Baylis– Hillman adducts via tandem Claisen rearrangement followed by cyclization.

4. Experimental

4.1. General

Melting points were recorded on a hot stage melting point apparatus and are uncorrected. The IR spectra were recorded on a FTIR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded on 200 MHz or 300 MHz spectrometer using TMS as internal standard. The mass spectra were recorded as FAB or LCMS having ES probe. The HRMS spectra were recorded as EI-HRMS.

4.2. General procedure for the preparation of compounds 3 and 12

To a stirred solution of the required acetate (4.0 mmol) (1.0 equiv) in THF/H₂O (10 mL, 50:50, v/v) was added DABCO (6.0 mmol) (1.5 equiv) at room temperature. After 15 min the appropriate aniline (4.8 mmol) was added to the reaction and it was continued for 3 h (48 h when EWG is CN). The solvent was removed in vacuo and the residue was extracted with ethyl acetate (3×50 mL) and water (70 mL). The organic fractions were combined, washed with brine (50 mL), dried (Na₂SO₄), and evaporated to yield the crude product, which was purified via silica gel column chromatography using hexanes/ethyl acetate (90–85:10–15, v/v) to afford pure compounds.

4.2.1. 2-(Phenyl-phenylamino-methyl)-acrylic acid ethyl ester (Table 1, 3, entry 1). Yield: 0.57 g, 85%, as a brown oil; R_f (20% EtOAc/hexane): 0.65; ν_{max} (Neat): 1712 (CO), 3402 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.21 (t, 3H, *J*=7.1 Hz, CH₃), 4.15 (q, 2H, *J*=7.1 Hz, CO₂CH₂), 5.41 (s, 1H, CH), 5.94 (s, 1H, =CH₂), 6.38 (d, 2H, *J*=7.6 Hz, ArH), 6.72 (t, 1H, *J*=7.3 Hz, ArH), 7.16 (t, 2H, *J*=7.4 Hz, ArH), 7.25–7.36 (m, 5H, ArH); mass (ES⁺): *m/z* 281.9 (M⁺+1). Anal. Calcd. for C₁₈H₁₉NO₂ requires: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.65; H, 6.71; N, 5.09.

4.2.2. 2-[(2-Chlorophenyl)-phenylamino-methyl]-acrylic acid ethyl ester (Table 1, 3, entry 2). Yield: 0.90 g, 80%, as a white solid; mp 107–109 °C; R_f (20% EtOAc/hexane): 0.48; ν_{max} (KBr): 1699 (CO), 3382 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.21 (t, 3H, *J*=7.2 Hz, CH₃), 4.17 (q, 2H, *J*=7.2 Hz, CO₂CH₂), 5.78 (s, 1H, CH), 5.85 (s, 1H, =CH₂), 6.42 (s, 1H, =CH₂), 6.55–6.59 (m, 2H, ArH), 6.68–6.75 (m, 1H, ArH), 7.11–7.23 (m, 4H, ArH), 7.37–7.41 (m, 2H, ArH); ¹³C NMR (50 MHz, CDCl₃): δ 14.5, 55.9, 61.4, 113.7, 118.5, 127.5, 127.6, 128.8, 129.4, 129.6, 130.4, 134.5, 138.5, 140.3, 147.0, 166.5; mass (ES⁺): *m*/*z* 316.0 (M⁺+1). Anal. Calcd. for C₁₈H₁₈CINO₂ requires: C, 68.46; H, 5.75; N, 4.44. Found: C, 68.11; H, 5.96; N, 4.49.

4.2.3. 2-[(4-Bromophenyl)-phenylamino-methyl]-acrylic acid ethyl ester (Table 1, 3, entry 3). Yield: 1.81 g, 82%, as a brown oil; R_f (20% EtOAc/hexane): 0.5; ν_{max} (Neat): 1747 (CO), 3398 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.25 (t, 3H, J=7.2 Hz, CH₃), 4.18 (q, 2H, J=7.2 Hz, CO₂CH₂), 5.39 (s, 1H, CH), 5.92 (s, 1H, =CH₂), 6.40 (s, 1H, =CH₂), 6.59 (d, 2H, J=7.8 Hz, ArH), 6.75 (d, 2H, J=7.3 Hz, ArH), 7.18 (d, 2H, J=7.6 Hz, ArH), 7.28 (d, 2H, J=3.9 Hz, ArH), 7.48 (d, 2H, J=8.5 Hz, ArH); mass (ES⁺): m/z 359.9 (M⁺+1), 361.9 (M⁺+3). Anal. Calcd. for C₁₈H₁₈BrNO₂ requires: C, 60.01; H, 5.04; N, 3.89. Found: C, 60.08; H, 4.89; N, 3.90.

4.2.4. 2-[(4-Chloro-phenylamino)-phenyl-methyl]-acrylic acid ethyl ester (Table 1, 3, entry 4). Yield: 1.45 g 76%, as a light yellow oil; $R_f(15\% \text{ EtOAc/hexane})$: 0.42; ν_{max} (Neat): 1715 (CO), 3413 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.21 (t, 3H, *J*=7.1 Hz, CH₃), 4.15 (q, 2H, *J*=7.1 Hz, CO₂CH₂), 5.36 (s, 1H, CH), 5.89 (s, 1H, =CH₂), 6.38 (s, 1H, =CH₂), 6.49 (d, 2H, *J*=4.6 Hz, ArH), 7.10 (d, 2H,

J=4.6 Hz, ArH), 7.28–7.37 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.8, 57.8, 59.6, 113.3, 121.2, 124.8, 126.2, 126.6, 127.5, 127.7, 138.8, 139.0, 144.0, 164.8; mass (ES⁺): *m/z* 316.0 (M⁺+1). Anal. Calcd. for C₁₈H₁₈ClNO₂ requires: C, 68.46; H, 5.75; N, 4.44. Found: C, 68.60; H, 5.66; N, 4.30.

4.2.5. 2-[(4-Chloro-phenylamino)-(2-fluorophenyl)methyl]-acrylic acid ethyl ester (Table 1, 3, entry 5). Yield: 1.0 g, 81%, as a brown oil; R_f (15% EtOAc/hexane): 0.53; ν_{max} (Neat): 1721 (CO), 3433 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.21 (t, 3H, J=7.2 Hz, CH₃), 4.20 (q, 2H, J=7.2 Hz, CO₂CH₂), 4.27 (br s, 1H, NH), 5.67 (s, 1H, CH), 5.84 (s, 1H, =CH₂), 6.40 (s, 1H, =CH₂), 6.50 (d, 2H, J=6.6 Hz, ArH), 7.05–7.14 (m, 4H, ArH), 7.23– 7.33 (m, 2H, ArH); mass (ES⁺): m/z 333.9 (M⁺+1), 335.9 (M⁺+3); HR-EIMS calculated for C₁₈H₁₇ClFNO₂: 333.0932. Found: 333.0924.

4.2.6. 2-[(4-Bromophenyl)-(4-chloro-phenylamino)methyl]-acrylic acid ethyl ester (Table 1, 3, entry 6). Yield: 1.2 g, 80%, as a brown oil; R_f (20% EtOAc/hexane): 0.70; ν_{max} (Neat): 1710 (CO), 3421 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.24 (t, 3H, *J*=7.2 Hz, CH₂CH₃), 4.16 (q, 2H, *J*=7.2 Hz, CH₂CH₃), 5.35 (s, 1H, CH), 5.87 (s, 1H, =CH₂), 6.39 (s, 1H, =CH₂), 6.48 (d, 2H, *J*=8.9 Hz, ArH), 7.10 (d, 2H, *J*=8.8 Hz, ArH), 7.24 (d, 2H, *J*=8.5 Hz, ArH), 7.47 (d, 2H, *J*=8.5 Hz, ArH); mass (ES⁺): *m*/*z* 393.9 (M⁺+1), 395.9 (M⁺+3). Anal. Calcd. for C₁₈H₁₇BrClNO₂ requires: C, 54.78; H, 4.34; N, 3.55. Found: C, 54.71; H, 4.38; N, 3.59.

4.2.7. 2-[(4-Fluoro-phenylamino)-phenyl-methyl]-acrylic acid ethyl ester (Table 1, 3, entry 7). Yield: 1.12 g, 77%, as a brown oil; R_f (20% EtOAc/hexane): 0.58; ν_{max} (Neat): 1712 (CO), 3401 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, 3H, *J*=7.1 Hz, CH₃), 4.17 (q, 2H, *J*=7.1 Hz, CO₂CH₂), 5.36 (s, 1H, CH), 5.92 (t, 1H, *J*=1.0 Hz, =CH₂), 6.40 (s, 1H, =CH₂), 6.51–6.56 (m, 2H, ArH), 6.88 (t, 2H, *J*=8.6 Hz, ArH), 7.30–7.40 (m, 5H, ArH); ¹³C NMR (50 MHz, CDCl₃): δ 14.4, 60.0, 61.3, 114.7, 114.8, 115.8, 116.2, 126.4, 127.9, 128.2, 129.1, 140.8, 141.0, 143.5, 154.1, 158.8, 166.6; mass (ES⁺): *m/z* 299.9 (M⁺+1); HR-EIMS calculated for C₁₈H₁₈FNO₂: 299.1322. Found: 299.1328.

4.2.8. 2-[(2-Chlorophenyl)-(4-fluoro-phenylamino)methyl]-acrylic acid ethyl ester (Table 1, 3, entry 8). Yield: 0.68 g, 77%, as a brown oil; R_f (20% EtOAc/hexane): 0.58; ν_{max} (Neat): 1714 (CO), 3400 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, 3H, *J*=7.2 Hz, CH₃), 4.13 (br s, 1H, NH), 4.20 (q, 2H, *J*=7.2 Hz, CO₂CH₂), 5.78 (s, 1H, CH), 5.81 (s, 1H, =CH₂), 6.45 (s, 1H, =CH₂), 6.49– 6.55 (m, 2H, ArH), 6.85–6.90 (m, 2H, ArH), 7.23–7.28 (m, 2H, ArH), 7.39–7.45 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.7, 54.8, 59.7, 112.9, 114.2, 114.5, 125.8, 126.0, 127.0, 127.7, 128.7, 132.8, 136.6, 138.5, 141.7, 153.3, 156.4, 164.7; mass (ES⁺): *m/z* 334.1 (M⁺+1); HR-EIMS calculated for C₁₈H₁₇ClFNO₂: 333.0932. Found: 333.0930.

4.2.9. 2-[(4-Bromophenyl)-(4-fluoro-phenylamino)methyl]-acrylic acid ethyl ester (Table 1, 3, entry 9). Yield: 1.9 g, 86%, as a brown oil; R_f (20% EtOAc/hexane): 0.53; ν_{max} (Neat): 1707 (CO), 3419 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.25 (t, 3H, *J*=7.1 Hz, CH₃), 4.18 (q, 2H, *J*=7.1 Hz, CH₂), 5.31 (s, 1H, CH), 5.90 (s, 1H, =CH₂), 6.40 (s, 1H, =CH₂), 6.49–6.54 (m, 2H, ArH), 6.88 (t, 2H, *J*=6.4 Hz, ArH), 7.27 (d, 2H, *J*=7.3 Hz, ArH), 7.48 (d, 2H, *J*=6.6 Hz, ArH); mass (ES⁺): *m/z* 377.9 (M⁺+1), 379.9 (M⁺+3); HR-EIMS calculated for C₁₈H₁₇BrFNO₂: 377.0427. Found: 377.0431.

4.2.10. 2-[(4-Bromo-phenylamino)-phenyl-methyl]acrylic acid ethyl ester (Table 1, 3, entry 10). Yield: 1.50 g, 75%, as a light yellow oil; R_f (20% EtOAc/hexane): 0.8; ν_{max} (Neat): 1709 (CO), 3398 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.23 (t, 3H, J=7.1 Hz, CH₃), 4.17 (q, 2H, J=7.1 Hz, CO₂CH₂), 5.38 (s, 1H, CH), 5.92 (s, 1H, =CH₂), 6.40 (s, 1H, =CH₂), 6.46–6.50 (m, 2H, ArH), 7.23-7.26 (m, 3H, ArH), 7.28-7.32 (m, 4H, ArH); ¹³C NMR (50 MHz, CDCl₃): δ 13.0, 58.0, 59.9, 108.5, 114.0, 125.0, 126.4, 126.9, 127.7, 128.7, 130.8, 139.0, 139.2, 144.7, 165.0; mass (ES⁺): *m*/*z* 359.9 (M⁺+1), 361.9 $(M^++3);$ HR-EIMS calculated for $C_{18}H_{18}BrNO_2$: 359.0521. Found: 359.0527.

4.2.11. 2-(**Phenyl-***o***-tolylamino-methyl)-acrylic acid ethyl ester (Table 1, 3, entry 11).** Yield: 0.4 g, 85%, as brown oil; $R_f(20\% \text{ EtOAc/hexane})$: 0.66; ν_{max} (Neat): 1705 (CO), 3429 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.21 (t, 3H, J=7.2 Hz, CH₃), 2.15 (s, 3H, CH₃), 4.04–4.20 (q merged with br s, 3H, CO₂CH₂, and NH), 5.47 (s, 1H, CH), 5.90 (s, 1H, =CH₂), 6.38 (s, 1H, =CH₂), 6.50 (d, 1H, J=8.2 Hz, ArH), 6.71 (t, 1H, J=7.0 Hz, ArH), 7.06 (d, 2H, J=7.1 Hz), 7.31–7.38 (m, 5H, ArH); mass (ES⁺): m/z 296.0 (M⁺+1). Anal. Calcd. for C₁₉H₂₁NO₂ requires: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.14; H, 7.26; N, 4.91.

4.2.12. 2-[Phenyl-(3,4,5-trimethoxy-phenylamino)methyl]-acrylic acid ethyl ester (Table 1, 3, entry 12). Yield: 1.95 g, 65%, as a brown oil; R_f (20% EtOAc/hexane): 0.41; ν_{max} (Neat): 1713 (CO), 3383 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, 3H, *J*=7.1 Hz, CH₃), 3.77 (s, 3H, OCH₃), 3.78 (s, 6H, 2×OCH₃), 4.17 (q, 2H, *J*=3.9 Hz, CO₂CH₂), 5.40 (s, 1H, CH), 5.85 (s, 2H, ArH), 5.97 (s, 1H, =CH₂), 6.41 (s, 1H, =CH₂), 7.28–7.38 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 12.8, 54.6, 58.1, 59.6, 59.8, 89.9, 124.7, 126.1, 126.5, 127.5, 129.1, 139.3, 139.4, 142.3, 152.5, 165.0; mass (ES⁺): *m/z* 371.9 (M⁺+1). Anal. Calcd. for C₂₁H₂₅NO₅ requires: C, 67.91; H, 6.78; N, 3.77. Found: C, 68.12; H, 6.89; N, 3.59.

4.2.13. 2-[(4-Fluoro-phenylamino)-pyridin-3-yl-methyl]acrylic acid ethyl ester (Table 1, 3, entry 13). Yield: 1.38 g, 55%, as a brown oil; R_f (30% EtOAc/hexane): 0.54; ν_{max} (Neat): 1707 (CO), 3407 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.23 (t, 3H, *J*=7.1 Hz, CH₃), 4.16 (q, 2H, *J*=7.1 Hz, CH₂), 5.37 (d, 1H, *J*=3.7 Hz, CH), 5.95 (s, 1H, =CH₂), 6.44 (s, 1H, =CH₂), 6.49–6.56 (m, 2H, ArH), 6.88 (t, 2H, *J*=8.7 Hz, ArH), 7.29–7.32 (m, 1H, ArH), 7.71 (d, 1H, *J*=7.8 Hz, ArH), 8.55 (d, 1H, *J*=3.9 Hz, ArH), 8.65 (s, 1H, ArH); mass (ES⁺): *m/z* 301.1 (M⁺+1); HR-EIMS calculated for C₁₇H₁₇FN₂O₂: 300.1274. Found: 300.1266. **4.2.14. 2-(Phenyl-***p***-tolylamino-methyl)-acrylic acid methyl ester (Table 1, 3, entry 14).** Yield: 3.1 g, 86%, as a brown oil; R_f (20% EtOAc/hexane): 0.69; ν_{max} (Neat): 1719 (CO), 3402 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.23 (s, 3H, CH₃), 3.70 (s, 3H, CH₃), 4.04 (br s, 1H, NH), 5.37 (s, 1H, CH), 5.97 (s, 1H, =CH₂), 6.38 (s, 1H, =CH₂), 6.50 (d, 2H, *J*=8.4 Hz, ArH), 6.97 (d, 2H, *J*=8.4 Hz, ArH), 7.26–7.39 (m, 5H, ArH); mass (ES⁺): *m/z* 282.2 (M⁺+1). Anal. Calcd. for C₁₈H₁₉NO₂ requires: C,

76.84; H, 6.81; N, 4.98. Found: C, 76.60; H, 6.75; N, 5.10.

4.2.15. 2-[(2-Chlorophenyl)-(4-chloro-phenylamino)methyl]-acrylic acid methyl ester (Table 1, 3, entry 15). Yield: 1.90 g, 82%, as a brown oil; R_f (20% EtOAc/hexane): 0.70; ν_{max} (Neat): 1718 (CO), 3408 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.76 (s, 3H, CH₃), 4.21 (br s, 1H, NH), 5.78 (s, 1H, =CH₂), 5.81 (d, 1H, *J*=5.2 Hz, CH), 6.44 (s, 1H, =CH₂), 6.50 (d, 2H, *J*=8.8 Hz, ArH), 7.10 (d, 2H, *J*=8.8 Hz, ArH), 7.22–7.28 (m, 2H, ArH), 7.36–7.46 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 50.9, 54.3, 113.12, 121.4, 125.8, 126.4, 126.9, 127.8, 128.8, 132.8, 136.1, 138.0, 143.8, 165.1; mass (ES⁺): *m/z* 335.9 (M⁺+1), 337.9 (M⁺+3). Anal. Calcd. for C₁₇H₁₅Cl₂NO₂ requires: C, 60.73; H, 4.50; N, 4.17. Found: C, 60.50; H, 4.66; N, 3.98.

4.2.16. 2-[(2-Fluorophenyl)-phenylamino-methyl]-acrylic acid methyl ester (Table 1, 3, entry 16). Yield: 1.50 g, 88%, as a white solid; mp 89–91 °C; R_f (20% EtOAc/hexane): 0.54; ν_{max} (KBr): 1709 (CO), 3403 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.76 (s, 3H, CH₃), 4.32 (br s, 1H, NH), 5.83 (s, 1H, CH), 5.96 (s, 1H, =CH₂), 6.46 (s, 1H, =CH₂), 6.64–6.67 (m, 2H, ArH), 6.75–6.80 (m, 1H, ArH), 7.08–7.23 (m, 4H, ArH), 7.27–7.35 (m, 1H, ArH), 7.39–7.45 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 50.7, 51.2, 112.2, 114.4, 114.7, 116.9, 123.1, 125.6, 126.3, 127.4, 128.0, 128.2, 138.2, 145.2, 157.7, 161.2, 165.2; mass (ES⁺): m/z 286.0 (M⁺+1); HR-EIMS calculated for C₁₇H₁₆FNO₂: 285.1165. Found: 285.1158.

4.2.17. 2-[(2-Fluorophenyl)-phenylamino-methyl]-acrylic acid *tert*-**butyl ester** (**Table 1, 3, entry 17).** Yield: 2.4 g, 86%, as a white solid; mp 85–87 °C; R_f (15% EtOAc/hexane): 0.72; ν_{max} (KBr): 1699 (CO), 3401 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.40 (s, 9H, 3×CH₃), 5.73 (s, 1H, CH), 5.81 (s, 1H, =CH₂), 6.35 (s, 1H, =CH₂), 6.63 (d, 2H, *J*=7.7 Hz, ArH), 6.75 (t, 1H, *J*=7.3 Hz), 7.06–7.22 (m, 4H, ArH), 7.26–7.33 (m, 2H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 26.6, 51.1, 80.1, 112.1, 114.2, 114.5, 116.7, 123.0, 124.3, 126.7, 126.9, 127.9, 128.1, 139.9, 145.4, 157.6, 160.9, 164.0; mass (ES⁺): *m/z* 327.9 (M⁺+1); HR-EIMS calculated for C₂₀H₂₂FNO₂: 327.1635. Found: 327.1644.

4.2.18. 2-[(4-Chlorophenylamino)-(2-fluorophenyl)methyl]-acrylic acid *tert*-butyl ester (Table 1, 3, entry **18).** Yield: 2.0 g, 81%, as a brown solid; mp 102–104 °C; R_f (15% EtOAc/hexane): 0.76; ν_{max} (KBr): 1700 (CO), 3337 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.40 (s, 9H, 3×CH₃), 4.23 (br s, 1H, NH), 5.67 (s, 1H, CH), 5.76 (s, 1H, ==CH₂), 6.34 (s, 1H, ==CH₂), 6.54 (d, 2H, J=8.7 Hz, ArH), 7.06–7.15 (m, 4H, ArH), 7.26–7.36 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 26.6, 51.3, 80.2, 113.0, 114.2, 114.5, 121.3, 123.0, 124.4, 126.5, 127.1, 127.8, 128.2, 139.6, 143.9, 157.6, 160.9, 163.9; mass (ES⁺): m/z361.9 (M⁺+1); HR-EIMS calculated for C₂₀H₂₁ClFNO₂: 361.1245. Found: 361.1243.

4.2.19. 2-[(**2-**Fluorophenyl)-(**4**-fluoro-phenylamino)methyl]-acrylic acid *tert*-butyl ester (Table 1, 3, entry **19).** Yield: 2.1 g, 81%, as a yellow solid; mp 82–84 °C; R_f (15% EtOAc/hexane): 0.74; v_{max} (KBr): 1696 (CO), 3398 (NH) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 1.40 (s, 9H, 3×CH₃), 5.64 (s, 1H, CH), 5.77 (s, 1H, =CH₂), 6.34 (s, 1H, =CH₂), 6.54–6.57 (m, 2H, ArH), 6.85–6.91 (m, 2H, ArH), 7.05–7.15 (m, 2H, ArH), 7.25–7.38 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 26.6, 51.7, 80.2, 112.9, 113.0, 114.2, 114.5, 123.0, 124.3, 126.7, 127.2, 128.1, 139.8, 141.7, 153.2, 156.4, 157.6, 160.9, 164.0; mass (ES⁺): *m/z* 345.9 (M⁺+1); HR-EIMS calculated for C₂₀H₂₁F₂NO₂: 345.1540. Found: 345.1544.

4.2.20. 2-[(**2-**Fluorophenyl)-(**4**-methoxy-phenylamino)methyl)]-acrylic acid *tert*-butyl ester (Table 1, 3, entry **20**). Yield: 1.10 g, 63%, as a brown oil; R_f (20% EtOAc/hexane): 0.71; ν_{max} (Neat): 1711 (CO), 3419 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.39 (s, 9H, 3×CH₃), 3.75 (s, 3H, OCH₃), 5.63 (s, 1H, CH), 5.79 (s, 1H, =CH₂), 6.33 (s, 1H, =CH₂), 6.58 (d, 2H, *J*=8.9 Hz, ArH), 6.77 (d, 2H, *J*=8.9 Hz, ArH), 7.06–7.15 (m, 2H, ArH), 7.23–7.41 (m, 2H, ArH); mass (ES⁺): *m*/*z* 358.9 (M⁺+1). Anal. Calcd. for C₂₁H₂₄FNO₃ requires: C, 70.57; H, 6.77; N, 3.92. Found: C, 70.48; H, 6.59; N, 4.11.

4.2.21. 2-[(4-Chloro-phenylamino)-phenyl-methyl]-acrylonitrile (Table 2, 12, entry 1). Yield: 1.45 g, 82%, as a brown oil; R_f (20% EtOAc/hexane): 0.56; ν_{max} (Neat): 2225 (CN), 3391 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 4.15 (d, 1H, J=3.9 Hz, NH) 5.02 (d, 1H, J=5.1 Hz, CH), 6.11 (s, 1H, =CH₂), 6.15 (s, 1H, =CH₂), 6.56 (d, 2H, J=8.8 Hz, ArH), 7.17 (d, 2H, J=8.8 Hz, ArH), 7.42–7.48 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 60.2, 113.5, 115.0, 116.0, 122.4, 122.8, 126.0, 127.7, 127.8, 128.1, 129.8, 136.5, 143.0; mass (ES⁺): m/z268.0 (M⁺). Anal. Calcd. for C₁₆H₁₃ClN₂ requires: C, 71.51; H, 4.88; N, 10.42. Found: C, 71.77; H, 5.02; N, 10.61.

4.2.22. 2-[(4-Chloro-phenylamino)-(2-fluorophenyl)methyl]-acrylonitrile (Table 2, 12, entry 2). Yield: 1.1 g, 68%, as a brown oil; R_f (20% EtOAc/hexane): 0.51; ν_{max} (Neat): 2226 (CN), 3386 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 4.17 (d, 1H, J=5.8 Hz, NH), 5.35 (d, 1H, J=5.8 Hz, CH), 6.08 (s, 1H, =CH₂), 6.13 (s, 1H, =CH₂), 6.57–6.63 (m, 3H, ArH), 7.08–7.19 (m, 3H, ArH), 7.35– 7.39 (m, 2H, ArH); mass (ES⁺): m/z 287.0 (M⁺+1). Anal. Calcd. for C₁₆H₁₂ClFN₂ requires: C, 67.02; H, 4.22; N, 9.77. Found: C, 66.92; H, 4.09; N, 9.97.

4.2.23. 2-[(**2,4-Dichlorophenyl)-phenylamino-methyl]acrylonitrile (Table 2, 12, entry 3).** Yield: 1.6 g, 73%, as a brown oil; R_f (20% EtOAc/hexane): 0.5; ν_{max} (Neat): 2247 (CN), 3425 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 4.09 (d, 1H, *J*=4.6 Hz, CHN*H*), 5.49 (d, 1H, *J*= 5.0 Hz, C*H*NH), 6.07 (s, 1H, =CH₂), 6.16 (s, 1H, =CH₂), 6.55 (d, 2H, *J*=7.4 Hz, ArH), 6.79 (t, 1H, *J*=7.2 Hz, ArH), 7.15–7.32 (m, 3H, ArH), 7.39–7.48 (m, 2H, ArH); mass (FAB⁺): *m/z* 303 (M⁺+1). Anal. Calcd. for C₁₆H₁₂Cl₂N₂ requires: C, 63.38; H, 3.99; N, 9.24. Found: C, 63.41; H, 4.19; N, 9.41.

4.2.24. 2-[(4-Chloro-phenylamino)-(2,4-dichloro-phenylmethyl]-acrylonitrile (Table 2, 12, entry 4). Yield: 1.6 g, 62%, as a brown oil; R_f (20% EtOAc/hexane): 0.61; ν_{max} (Neat): 2223 (CN), 3386 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 4.08 (d, 1H, *J*=4.8 Hz, NH), 5.01 (d, 1H, *J*=5.2 Hz, CH), 6.12 (s, 1H, =CH₂), 6.14 (s, 1H, =CH₂), 6.48–6.62 (m, 2H, ArH), 6.74–6.80 (m, 3H, ArH), 7.35 (d, 1H, *J*=2.6 Hz, ArH), 7.58 (d, 1H, *J*=2.6 Hz, ArH); mass (ES⁺): *m*/*z* 337.2 (M⁺+1), 339.2 (M⁺+1). Anal. Calcd. for C₁₆H₁₁Cl₃N₂ requires: C, 56.92; H, 3.28; N, 8.30. Found: C, 56.94; H, 3.10; N, 8.14.

4.3. General procedure for the preparation of compounds 4 and 13

To a vessel containing the appropriate aniline (2.5 mmol) was added TFA (5 mL) (amount of TFA was kept between 5 and 8 mL for all compounds in the range 1.0-3.0 g) and the mixture was refluxed for 8–14 h. On completion (monitored by TLC), the reaction mixture was poured into ice cold water and neutralized with saturated NaHCO₃ solution. The suspension formed was filtered and washed with ethyl acetate to afford the product **4** in 30–94% yield. However, for compounds **13** the crude product obtained after usual workup were purified via silica gel column chromatography using hexane/ethyl acetate (35:65, v/v) as eluent.

4.3.1. 3-Benzylidene-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 1).** Yield: 1.2 g, 88%, as a white solid; mp 177–179 °C; R_f (25% EtOAc/hexane): 0.42; ν_{max} (KBr): 1669 (CO), 3444 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 4.08 (s, 2H, CH₂), 6.86–6.93 (m, 2H, ArH), 7.09–7.17 (m, 2H, ArH), 7.36–7.54 (m, 5H, ArH), 7.66 (s, 1H, ==CH), 10.35 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6): δ 29.1, 114.0, 120.0, 121.2, 126.3, 127.1, 127.2, 127.7, 129.1, 134.3, 134.4, 135.9, 163.2; mass (FAB⁺): m/z 236 (M⁺+1). Anal. Calcd. for C₁₆H₁₃NO requires: C, 81.68; H, 5.57; N, 5.95. Found: C, 81.82; H, 5.69; N, 5.63.

4.3.2. 3-(2-Chlorobenzylidene)-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 2).** Yield: 0.48 g, 71%, as a white solid; mp 196–198 °C; R_f (20% EtOAc/hexane): 0.4; ν_{max} (KBr): 1672 (CO), 3428 (NH) cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6): δ 3.96 (s, 2H, CH₂), 6.88–6.96 (m, 2H, ArH), 7.13–7.23 (m, 2H, ArH), 7.38–7.51 (m, 2H, ArH), 7.57–7.60 (m, 2H, ArH), 7.67 (s, 1H, =CH), 10.50 (s, 1H, NH); mass (ES⁺): m/z 270.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂CINO: 269.0607. Found: 269.0604.

4.3.3. 3-(**4**-Bromobenzylidene)-**3**,**4**-dihydro-1*H*-quinolin-**2**-one (Table 1, 4, entry 3). Yield: 1.04 g, 80%, as a pale yellow solid; mp 238–240 °C; R_f (20% EtOAc/hexane): 0.38; ν_{max} (KBr): 1676 (CO), 3407 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 4.06 (d, 2H, *J*=1.8 Hz, CH₂), 6.88–6.93 (m, 2H, ArH), 7.10–7.19 (m, 2H, ArH), 7.46–7.52 (m, 2H, ArH), 7.59 (s, 1H, =CH), 7.66–7.74 (m, 2H, ArH), 10.38 (s, 1H, NH); ¹³C NMR (50 MHz, DMSO- d_6): δ 35.4, 120.4, 126.2, 127.5, 127.7, 132.7, 133.7, 134.4, 136.7, 137.1, 137.5, 139.5, 139.9, 142.2, 169.3; mass (FAB⁺): *m/z* 314 (M⁺+1). Anal. Calcd. for C₁₆H₁₂BrNO

requires: C, 61.17; H, 3.85; N, 4.46. Found: C, 61.15; H, 3.84; N, 4.41.

4.3.4. 3-Benzylidene-6-chloro-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 4).** Yield: 1.2 g, 88%, as a yellow solid; mp 235–237 °C; R_f (20% EtOAc/hexane): 0.36; ν_{max} (KBr): 1668 (CO), 3415 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 4.12 (d, 2H, *J*=2.0 Hz, CH₂), 6.89–6.92 (m, 1H, ArH), 7.17–7.20 (m, 1H, ArH), 7.30 (s, 1H, ArH), 7.41–7.55 (m, 5H, ArH), 7.65 (s, 1H, =CH), 10.49 (s, 1H, NH); mass (ES⁺): *m/z* 270.1 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂ClNO: 269.0607. Found: 269.0595.

4.3.5. 6-Chloro-3-(2-fluorobenzylidene)-3,4-dihydro-1*H***quinolin-2-one (Table 1, 4, entry 5). Yield: 0.81 g, 79%, as a yellow solid; mp 197–199 °C; R_f (20% EtOAc/hexane): 0.39; \nu_{max} (KBr): 1666 (CO), 3428 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO-d_6): \delta 3.85 (s, 2H, CH₂), 7.11–7.21 (m, 2H, ArH), 7.27–7.34 (m, 3H, ArH), 7.45–7.49 (m, 1H, ArH), 7.56 (s, 1H, ArH), 7.72 (s, 1H, =CH), 11.96 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d_6): \delta 28.0, 114.3, 114.5, 115.8, 119.5, 123.6, 124.9, 125.6, 127.7, 128.6, 130.6, 132.2, 134.8, 135.8, 160.6; mass (ES⁺):** *m***/***z* **288.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₁CIFNO: 287.0513. Found: 287.0502.**

4.3.6. 3-(**4**-Bromobenzylidene)-**6**-chloro-**3**,**4**-dihydro-1*H*-**quinolin-2-one (Table 1, 4, entry 6).** Yield: 0.45 g, 85%, as a pale yellow solid; mp 240–242 °C; R_f (20% EtOAc/hexane): 0.36; ν_{max} (KBr): 1674 (CO), 3408 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.80 (s, 2H, CH₂), 7.23–7.31 (m, 4H, ArH), 7.46–7.49 (m, 2H, ArH), 7.68–7.72 (m, 2H, =CH, ArH), 11.92 (s, 1H, NH); ¹³C NMR (50 MHz, DMSO- d_6): δ 34.1, 121.8, 121.9, 127.1, 130.3, 130.4, 130.7, 133.2, 133.3, 133.4, 133.8, 135.3, 138.0, 155.1, 158.2; mass (ES⁺): m/z 349 (M⁺+1). Anal. Calcd. for C₁₆H₁₁BrClNO requires: C, 55.12; H, 3.18; N, 4.02. Found: C, 55.10; H, 3.15; N, 4.00.

4.3.7. 3-Benzylidene-6-fluoro-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 7).** Yield: 0.95 g, 93%, as a light yellow solid; mp 220–222 °C; R_f (25% EtOAc/hexane): 0.43; ν_{max} (KBr): 1668 (CO), 3433 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 4.11 (d, 2H, *J*=1.5 Hz, CH₂), 6.89–6.98 (m, 2H, ArH), 7.07–7.11 (m, 1H, ArH), 7.38–7.54 (m, 5H, ArH), 7.65 (t, 1H, *J*=2.1 Hz, =CH), 10.38 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6): δ 29.0, 112.7, 113.0, 113.8, 114.1, 115.1, 121.9, 126.3, 127.8, 129.1, 132.4, 134.1, 134.6, 155.1, 158.2, 162.8; mass (FAB⁺): *m/z* 254 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂FNO: 253.0903. Found: 253.0896.

4.3.8. 3-(**2**-**Chlorobenzylidene**)-**6**-fluoro-**3**,**4**-dihydro-1*H*-**quinolin-2-one (Table 1, 4, entry 8).** Yield: 0.60 g, 70%, as a white solid; mp 185–187 °C; R_f (25% EtOAc/hexane): 0.37; ν_{max} (KBr): 1674 (CO), 3426 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.91 (s, 2H, CH₂), 6.80–6.88 (m, 3H, ArH), 7.35 (br s, 3H, ArH), 7.46–7.49 (m, 1H, ArH), 7.93 (s, 1H, ArH), 8.68 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6): δ 28.8, 112.8, 113.1, 113.7, 114.1, 115.3, 122.0, 126.4, 128.7, 129.5, 130.0, 131.1, 132.4, 155.1, 158.3, 162.6; mass (ES⁺): m/z 288.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₁ClFNO: 287.0513. Found: 287.0514.

4.3.9. 3-(**4**-Bromobenzylidene)-6-fluoro-3,4-dihydro-1*H*quinolin-2-one (Table 1, 4, entry 9). Yield: 1.0 g, 76%, as an off white solid; mp 215–217 °C; R_f (20% EtOAc/hexane): 0.39; ν_{max} (KBr): 1670 (CO), 3436 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 4.07 (s, 2H, CH₂), 6.87–7.01 (m, 2H, ArH), 7.05–7.09 (m, 1H, ArH), 7.22–7.34 (m, 2H, ArH), 7.45–7.49 (m, 3H, ArH), 7.59 (s, 1H, ==CH), 7.65 (d, 2H, *J*=8.3 Hz, ArH), 10.44 (s, 1H, NH); mass (ES⁺): m/z 332.1 (M+1), 334.1 (M+1); HR-EIMS calculated for C₁₆H₁₁BrFNO: 331.0008. Found: 331.0007.

4.3.10. 3-Benzylidene-6-bromo-3,4-dihydro-1*H***-quino-lin-2-one (Table 1, 4, entry 10).** Yield: 0.52 g, 79%, as a white solid; mp 221–223 °C; R_f (20% EtOAc/hexane): 0.31; ν_{max} (KBr): 1670 (CO), 3404 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.81 (s, 2H, CH₂), 7.15–7.27 (m, 5H, ArH), 7.52–7.56 (m, 1H, ArH), 7.62 (s, 1H, ArH), 7.78 (d, 1H, *J*=1.7 Hz, =CH); ¹³C NMR (75 MHz, DMSO- d_6): δ 39.5, 117.2, 120.8, 125.0, 130.1, 132.3, 132.8, 133.2, 135.9, 138.5, 139.5, 140.9, 143.3, 165.5; mass (ES⁺): m/z 314.1 (M⁺+1), 316.1 (M⁺+3); HR-EIMS calculated for C₁₆H₁₂BrNO: 313.0102. Found: 313.0106.

4.3.11. 3-Benzylidene-8-methyl-3,4-dihydro-1*H***-quino-lin-2-one (Table 1, 4, entry 11).** Yield: 0.45 g, 36%, as a pale yellow solid; mp 172–174 °C; R_f (20% EtOAc/hexane): 0.31; ν_{max} (KBr): 1624 (CO), 3422 (NH) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.28 (s, 3H, CH₃), 4.09 (s, 2H, CH₂), 6.84–7.00 (m, 3H, ArH), 7.15–7.44 (m, 4H, ArH), 7.79–7.84 (m, 2H, =CH, ArH); ¹³C NMR (50 MHz, CDCl₃): δ 17.1, 31.0, 121.5, 123.0, 126.5, 127.5, 128.3, 128.9, 129.4, 130.3, 132.2, 134.7, 135.8, 137.8, 166.1; mass (ES⁺): *m/z* 250.2 (M⁺+1). Anal. Calcd. for C₁₇H₁₅NO requires: C, 81.90; H, 6.06; N, 5.62. Found: C, 81.92; H, 6.08; N, 5.66.

4.3.12. 3-Benzylidene-5,6,7-trimethoxy-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 12).** Yield: 0.55 g, 63%, as a yellow solid; mp 134–136 °C; R_f (20% EtOAc/hexane): 0.43; ν_{max} (KBr): 1671 (CO), 3421 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.82 (s, 3H, CH₃), 3.85 (s, 3H, CH₃), 3.91 (s, 3H, CH₃), 4.01 (d, 2H, *J*=2.0 Hz CH₂), 6.35 (s, 1H, ArH), 7.36–7.41 (m, 1H, ArH), 7.44–7.53 (m, 4H, ArH), 7.94 (s, 1H, =CH), 9.96 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃): δ 23.6, 54.8, 59.4, 59.7, 94.2, 105.3, 125.3, 127.3, 127.4, 128.8, 130.8, 134.2, 136.2, 136.4, 149.7, 151.6, 164.9; mass (FAB⁺): *m/z* 326 (M⁺+1). Anal. Calcd. for C₁₉H₁₉NO₄ requires: C, 70.14; H, 5.89; N, 4.31. Found: C, 69.88; H, 6.06; N, 4.52.

4.3.13. 6-Fluoro-3-pyridin-3-yl-methylene-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 13).** Yield: 0.52 g, 68%, as a pale yellow solid; mp 186–188 °C; R_f (20% EtOAc/hexane): 0.3; ν_{max} (KBr): 1659 (CO), 3431 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.86 (s, 2H, CH₂), 7.28–7.38 (m, 3H, ArH), 7.43–7.49 (m, 1H, ArH), 7.68–7.73 (m, 2H, ArH), 8.42 (d, 1H, J=3.7 Hz, ArH), 8.54 (s, 1H, =CH), 11.90 (s, 1H, NH); mass (FAB⁺): m/z 255 (M⁺+1); HR-EIMS calculated for C₁₅H₁₁FN₂O: 254.0855. Found: 254.0856.

4.3.14. 3-Benzylidene-6-methyl-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 14).** Yield: 2.07 g, 78%, as a yellow solid; mp 215–217 °C; R_f (20% EtOAc/hexane): 0.28; ν_{max} (KBr): 1669 (CO), 3431 (NH) cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6): δ 2.49 (s, 3H, CH₃), 4.04 (s, 2H, CH₂), 6.77 (d, 1H, *J*=7.9 Hz, ArH), 6.91–6.97 (t, 2H, *J*=7.8 Hz, ArH), 7.39–7.54 (m, 5H, ArH), 7.61 (s, 1H, =CH), 10.28 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO d_6): δ 19.5, 29.1, 98.7, 113.9, 119.8, 126.7, 127.0, 127.3, 127.7, 129.1, 130.1, 133.4, 134.2, 134.3, 163.1; mass (ES⁺): *m/z* 250.2 (M⁺+1). Anal. Calcd. for C₁₇H₁₅NO requires: C, 81.90; H, 6.06; N, 5.62. Found: C, 82.05; H, 6.01; N, 5.51.

4.3.15. 6-Chloro-3-(2-chlorobenzylidene)-3,4-dihydro-*1H*-quinolin-2-one (Table 1, 4, entry 15). Yield: 1.40 g, 70%, as a white solid; mp 215–217 °C; R_f (20% EtOAc/hexane): 0.37; ν_{max} (KBr): 1674 (CO), 3406 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.94 (s, 2H, CH₂), 7.29–7.34 (m, 4H, ArH), 7.43–7.49 (m, 3H, ArH), 7.69 (d, 1H, J=1.7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 37.2, 120.6, 124.3, 129.6, 130.4, 131.2, 132.3, 133.3, 133.4, 135.3, 136.7, 137.3, 139.4, 140.3, 140.5, 165.4; mass (ES⁺): m/z 304.2 (M⁺+1), 306.2 (M⁺+3). Anal. Calcd. for C₁₆H₁₁Cl₂NO requires: C, 63.18; H, 3.65; N, 4.60. Found: C, 62.93; H, 3.88; N, 4.48.

4.3.16. 3-(2-Fluorobenzylidene)-3,4-dihydro-1*H***-quinolin-2-one (Table 1, 4, entry 16). Yield: 0.52 g, 73%, as a light yellow solid; mp 182–183 °C; R_f (20% EtOAc/hexane): 0.31; \nu_{max} (KBr): 1667 (CO), 3422 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO-d_6): \delta 3.97 (d, 2H, J=1.4 Hz, CH₂), 6.89–6.94 (m, 2H, ArH), 7.10–7.15 (m, 2H, ArH), 7.29–7.34 (m, 2H, ArH), 7.45–7.47 (m, 1H, ArH), 7.54– 7.62 (m, 2H, ArH and =CH), 10.38 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d_6): \delta 29.1, 114.1, 114.7, 115.0, 119.9, 120.9, 123.7, 126.4, 126.5, 127.2, 129.5, 130.0, 135.9, 157.5, 160.8, 162.7; mass (ES⁺): m/z 254.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂FNO: 253.0903. Found: 253.0902.**

4.3.17. 6-Fluoro-3-(2-fluorobenzylidene)-3,4-dihydro-*1H*-quinolin-2-one (Table 1, 4, entry 19). Yield: 0.8 g 85%, as a white solid; mp 215–217 °C; R_f (20% EtOAc/hexane): 0.34; ν_{max} (KBr): 1672 (CO), 3424 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.96 (d, J=1.0 Hz, 2H, CH₂), 6.84–6.91 (m, 3H, ArH), 7.15–7.28 (m, 2H, ArH), 7.37–7.45 (m, 2H, ArH), 7.90 (s, 1H, =CH), 9.40 (s, 1H, NH); ¹³C NMR (75 MHz, CDCl₃): δ 29.2, 112.8, 113.0, 113.4, 114.5, 114.8, 115.1, 121.7, 122.7, 127.4, 129.3, 129.6, 131.1, 157.5, 160.9, 164.1; mass (ES⁺): m/z 272.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₁F₂NO: 271.0809. Found: 271.0811.

4.3.18. 3-(2-Fluorobenzylidene)-6-methoxy-3,4-dihydro-1*H*-quinolin-2-one (Table 1, 4, entry 20). Yield: 0.61 g, 77%, as a white solid; mp 180–182 °C; R_f (20% EtOAc/hexane): 0.34; ν_{max} (KBr): 1658 (CO), 3419 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.72 (s, 3H, CH₃), 3.90 (s, 2H, CH₂), 6.62–6.67 (m, 2H, ArH), 6.82–6.85 (m, 1H, ArH), 7.09–7.15 (m, 1H, ArH), 7.19–7.24 (m, 1H, ArH), 7.32–7.39 (m, 2H, ArH), 7.74 (s, 1H, ==CH), 9.88 (s, 1H, CONH); ¹³C NMR (75 MHz, CDCl₃): δ 34.2, 59.0, 116.5, 119.6, 125.6, 126.7, 127.5, 132.5, 133.6, 133.8, 133.9, 134.0, 158.6, 162.2, 165.5, 168.0; mass (ES⁺): *m/z* 284.2 (M⁺+1). Anal. Calcd. for C₁₇H₁₄FNO₂ requires: C, 72.07; H, 4.98; N, 4.94. Found: C, 71.88; H, 5.16; N, 5.13.

4.3.19. 3-Benzyl-6-chloro-quinolin-2-ylamine (Table 2, 13, entry 1). Yield: 0.17 g, 28%, as a yellow solid; mp 157–159 °C; R_f (30% EtOAc/hexane): 0.49; ν_{max} (KBr): 3462 (NH₂) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.95 (s, 2H, CH₂), 6.44 (s, 2H, NH₂), 7.26–7.32 (m, 5H, ArH), 7.44 (t, 2H, *J*=2.5 Hz, ArH), 7.59 (s, 1H, ArH), 7.66 (s, 1H, ArH); mass (ES⁺): m/z 368.2 (M⁺+1), 370.2 (M⁺+3). Anal. Calcd. for C₁₆H₁₃ClN₂ requires: C, 71.51; H, 4.88; N, 10.42. Found: C, 71.66; H, 5.11; N, 10.13.

4.3.20. 6-Chloro-3-(2-fluorobenzyl)-quinolin-2-ylamine (**Table 2, 13, entry 2).** Yield: 0.43 g, 48%, as a yellow solid; mp 204–206 °C; R_f (20% EtOAc/hexane): 0.41; ν_{max} (KBr): 3430 (NH₂) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.97 (s, 2H, CH₂), 4.57 (br s, 2H, NH₂), 7.10–7.16 (m, 3H, ArH), 7.31–7.34 (m, 1H, ArH), 7.46–7.64 (m, 4H, ArH); mass (ES⁺): *m*/*z* 287.3 (M⁺+1). Anal. Calcd. for C₁₆H₁₂ClFN₂ requires: C, 67.02; H, 4.22; N, 9.77. Found: C, 67.10; H, 4.17; N, 9.52.

4.3.21. 3-(**2**,**4**-**Dichlorobenzyl**)-quinolin-2-ylamine (Table 2, 13, entry 3). Yield: 0.21 g, 46%, as a yellow solid; mp 286–288 °C; R_f (20% EtOAc/hexane): 0.3; ν_{max} (KBr): 3432 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.98 (s, 2H, CH₂), 7.26–7.29 (m, 1H, ArH), 7.36 (d, 2H, J=6.2 Hz, ArH), 7.46 (s, 1H, =CH), 7.58–7.61 (m, 1H, ArH), 7.78 (d, 1H, J=2.0 Hz, ArH), 7.88 (d, 1H, J=8.5 Hz, ArH); mass (FAB⁺): m/z 303 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂Cl₂N₂: 302.0378. Found: 302.0366.

4.3.22. 6-Chloro-3-(2,4-dichlorobenzyl)-quinolin-2-yl-amine (Table 2, 13, entry 4). Yield: 0.79 g, 53%, as a yellow solid; mp 228–230 °C; R_f (20% EtOAc/hexane): 0.45; ν_{max} (KBr): 3442 (NH₂) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.98 (s, 2H, CH₂), 6.58 (br s, 2H, NH₂), 7.21 (s, 1H, ArH), 7.32–7.35 (m, 1H, ArH), 7.42–7.49 (m, 3H, ArH), 7.65 (d, 1H, *J*=2.2 Hz, ArH), 7.67 (d, 1H, *J*=2.1 Hz, ArH); ¹³C NMR (75 MHz, DMSO- d_6) δ 32.8, 121.5, 123.0, 124.2, 125.0, 125.7, 126.8, 127.9, 128.1, 131.4, 131.9, 132.8, 133.8, 134.1, 144.4, 156.4; mass (ES⁺): *m/z* 337.3 (M⁺+1). Anal. Calcd. for C₁₆H₁₁Cl₃N₂ requires: C, 56.92; H, 3.28; N, 8.30. Found: C, 60.21; H, 3.50; N, 8.12.

4.4. General procedure for the preparation of compound 5

To a solution of the appropriate 3-arylmethylene-3,4-dihydro-1*H*-quinolin-2-one (3.2 mmol) in acetone (10 mL) was added anhydrous K_2CO_3 (0.9 g, 6.4 mmol) (2.0 equiv) and the mixture refluxed for 15 min. Thereafter acetone was removed under reduced pressure, the residue was diluted with water, and the formed suspension was filtered and dried under vacuum to yield the pure compound.

4.4.1. 3-Benzyl-1*H***-quinolin-2-one (Table 1, 5, entry 1).** See Ref. 4.

4.4.2. 6-Chloro-3-(2-fluorobenzyl)-1*H***-quinolin-2-one (Table 1, 5, entry 5).** Yield: 0.5 g, 100%, as a white solid;

mp 235–236 °C; R_f (20% EtOAc/hexane): 0.37; ν_{max} (KBr): 1656 (CO), 3426 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.85 (s, 2H, CH₂), 7.14–7.20 (m, 2H, ArH), 7.26–7.33 (m, 3H, ArH), 7.45–7.49 (m, 1H, ArH), 7.55 (s, 1H, ArH), 7.71 (d, 1H, J=1.9 Hz, ArH), 11.95 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6): δ 27.9, 114.3, 114.5, 115.8, 119.5, 123.5, 124.8, 124.9, 125.6, 127.7, 128.6, 130.5, 132.1, 134.7, 135.8, 160.6; mass (ES⁺): m/z 288.2 (M⁺+1), 290.2 (M⁺+3); HR-EIMS calculated for C₁₆H₁₁ClFNO: 287.0513. Found: 287.0516.

4.4.3. 3-(**4**-**Bromobenzyl**)-**6**-fluoro-1*H*-quinolin-2-one (**Table 1, 5, entry 9**). Yield: 0.17 g, 100%, as a pale yellow solid; mp >250 °C; R_f (20% EtOAc/hexane): 0.37; ν_{max} (KBr): 1662 (CO), 3425 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.81 (s, 2H, CH₂), 7.23 (d, 2H, *J*=8.3 Hz, ArH), 7.31–7.34 (m, 2H, ArH), 7.44–7.49 (m, 3H, ArH), 7.66 (s, 1H, ArH); ¹³C NMR (75 MHz, DMSO- d_6): δ 34.2, 111.2, 111.5, 115.8, 116.5, 116.8, 118.5, 119.1, 130.3, 133.3, 133.9, 135.2, 138.1, 154.6, 157.7, 160.6; mass (ES⁺): *m/z* 332.1 (M⁺+1); HR-EIMS calculated for C₁₆H₁₁BrFNO: 331.0008. Found: 331.0012.

4.4.4. 3-Benzyl-6-bromo-1*H***-quinolin-2-one (Table 1, 5, entry 10).** Yield: 0.52 g, 100%, as a white solid; mp >250 °C; R_f (20% EtOAc/hexane): 0.3; ν_{max} (KBr): 1670 (CO), 3399 (NH) cm⁻¹; ¹H NMR (DMSO- d_6 , 300 MHz): δ 3.81 (s, 2H, CH₂), 7.18–7.27 (m, 6H, ArH), 7.54–7.57 (m, 1H, ArH), 7.64 (s, 1H, ArH), 7.80 (d, 1H, *J*=2.1 Hz, ArH); ¹³C NMR (DMSO- d_6 , 75 MHz): δ 35.5, 113.4, 116.9, 121.1, 126.2, 128.4, 128.9, 129.4, 132.0, 134.6, 135.7, 137.0, 139.4, 161.6; mass (ES⁺): *m/z* 314.1 (M⁺+1), 316.1 (M⁺+3); HR-EIMS calculated for C₁₆H₁₂BrNO: 313.0102. Found: 313.0102.

4.4.5. 3-Benzyl-6-methyl-1*H***-quinolin-2-one (Table 1, 5, entry 14). Yield: 0.50 g, 100%, as a white solid; mp 224–225 °C; R_f (20% EtOAc/hexane): 0.3; \nu_{max} (KBr): 1646 (CO), 3431 (NH) cm⁻¹; ¹H NMR (DMSO-d_6, 300 MHz): \delta 2.31 (s, 3H, CH₃), 3.82 (s, 2H, CH₂), 7.18–7.35 (m, 8H, ArH), 7.58 (s, 1H, ArH), 11.69 (s, 1H, NH); ¹³C NMR (DMSO-d_6, 75 MHz): \delta 24.3, 39.5, 118.6, 123.2, 130.0, 130.8, 132.2, 132.8, 134.6, 137.1, 139.9, 140.4, 143.7, 165.7; mass (ES⁺): m/z 250.2 (M⁺+1). Anal. Calcd. for C₁₇H₁₅NO requires: C, 81.90; H, 6.06; N, 5.62. Found: C, 82.16; H, 5.93; N, 5.69.**

4.4.6. 6-Chloro-3-(2-chlorobenzyl)-1*H***-quinolin-2-one** (**Table 1, 5, entry 15).** Yield: 0.60 g, 100%, as a white solid; mp 229–231 °C; R_f (20% EtOAc/hexane): 0.35; ν_{max} (KBr): 1662 (CO), 3429 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.93 (s, 2H, CH₂), 7.28–7.37 (m, 4H, ArH), 7.41–7.48 (m, 3H, ArH), 7.68 (d, 1H, *J*=2.1 Hz); ¹³C NMR (75 MHz, DMSO- d_6): δ 32.4, 115.9, 119.5, 124.8, 125.6, 126.5, 127.6, 128.5, 130.6, 131.9, 132.6, 134.7, 135.5, 135.8, 160.7; mass (ES⁺): m/z 304.2 (M⁺+1), 306.1 (M⁺+3). Anal. Calcd. for C₁₆H₁₁Cl₂NO requires: C, 63.18; H, 3.65; N, 4.60. Found: C, 63.04; H, 3.89; N, 4.78.

4.4.7. 3-(2-Fluorobenzyl)-1*H***-quinolin-2-one (Table 1, 5, entry 16).** Yield: 0.20 g, 100%, as a white solid; mp 197–199 °C; R_f (20% EtOAc/hexane): 0.3; ν_{max} (KBr): 1662 (CO), 3427 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆):

δ 4.07 (s, 2H, CH₂), 7.06–7.35 (m, 5H, ArH), 7.39–7.49 (m, 4H, ArH), 11.49 (s, 1H, NH); ¹³C NMR (50 MHz, DMSO-*d*₆): δ 29.1, 115.2, 115.8, 119.5, 122.1, 124.7, 126.2, 127.7, 128.8, 129.9, 131.8, 131.9, 137.0, 138.3, 162.0, 163.4; mass (ES⁺): *m/z* 254.1 (M⁺+1); HR-EIMS calculated for C₁₆H₁₂FNO: 253.0903. Found: 253.0902.

4.4.8. 6-Fluoro-3-(2-fluorobenzyl)-1*H*-**quinolin-2-one** (**Table 1, 5, entry 19**). Yield: 1.0 g, 100%, as a white solid; mp 219–221 °C; R_f (20% EtOAc/hexane): 0.32; ν_{max} (KBr): 1657 (CO), 3414 (NH) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 3.86 (s, 2H, CH₂), 7.11–7.21 (m, 2H, ArH), 7.26–7.33 (m, 4H, ArH), 7.45–7.53 (m, 2H, ArH), 11.86 (br s, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6): δ 28.0, 111.5, 114.5, 115.8, 116.9, 119.0, 123.5, 125.0, 127.7, 130.6, 132.2, 133.8, 134.9, 157.7, 160.5, 161.4; mass (ES⁺): m/z 272.2 (M⁺+1); HR-EIMS calculated for C₁₆H₁₁F₂NO: 271.0809. Found: 271.0805.

4.5. General procedure for the preparation of compound 6

To a round bottom flask containing 2-quinolone (3.2 mmol) (1.0 equiv) was added POCl₃ (5.8 mL, 63.9 mmol) and the mixture refluxed for 30 min. After completion of the reaction, reaction mixture was poured in ice cold water and basified with NaHCO₃ solution to pH 8–8.5 and extracted with ethyl acetate (3×50 mL). These organic fractions were combined, washed with brine (50 mL), dried (Na₂SO₄), and evaporated in vacuo to yield the crude product, which was purified by silica gel column chromatography using hexanes/ethyl acetate (95–90:5–10, v/v) to furnish the pure compounds in 82–97% yield.

One-pot procedure from compound 4: to a vessel containing the appropriate aniline (2.5 mmol) was added TFA (5 mL) and this mixture was heated at reflux for 8–14 h. On completion (as monitored by TLC), the excess TFA was evaporated in vacuo and the residue was taken in 10 mL of acetone. To this solution K_2CO_3 (1.19 g, 8.62 mmol) was added and the mixture was heated at reflux for 15 min. The solvent was removed, water was added to the residue, and the separated solid was filtered and dried to furnish the pure products.

4.5.1. 3-Benzyl-2-chloro-quinoline (Table 1, 6, entry 1). Yield: 0.035 g, 66%, as a yellow solid; mp 156–158 °C; R_f (10% EtOAc/hexane): 0.81; ¹H NMR (200 MHz, CDCl₃): δ 4.11 (s, 2H, CH₂), 6.84 (d, 2H, *J*=7.6 Hz, ArH), 6.97 (t, 1H, *J*=7.2 Hz, ArH), 7.17 (d, 2H, *J*=8.8 Hz, ArH), 7.45 (s, 4H, ArH), 7.88 (s, 1H, ArH), 8.68 (s, 1H, ArH); mass (ES⁺): *m*/*z* 254.2 (M⁺+1). Anal. Calcd. for C₁₆H₁₂ClN requires: C, 75.74; H, 4.77; N, 5.52. Found: C, 75.72; H, 4.73; N, 5.49.

4.5.2. 2-Chloro-3-(2-chlorobenzyl)-quinoline (Table 1, 6, entry 2). Yield: 0.20 g, 71%, as a yellow solid; mp 107–109 °C; R_f (15% EtOAc/hexane): 0.61; ¹H NMR (300 MHz, CDCl₃): δ 4.36 (s, 2H, CH₂), 7.18–7.21 (m, 1H, ArH), 7.23–7.32 (m, 3H, ArH), 7.46–7.55 (m, 2H, ArH), 7.66–7.73 (m, 3H, ArH), 8.04 (d, 1H, *J*=9.0 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 36.8, 115.4, 123.0,

126.5, 127.0, 129.6, 128.5, 129.9, 130.4, 131.2, 133.3, 134.8, 136.5, 145.3, 150.1, 164.4; mass (ES⁺): m/z 288.3 (M⁺+1), 290.2 (M+3). Anal. Calcd. for C₁₆H₁₁Cl₂N requires: C, 66.69; H, 3.85; N, 4.86. Found: C, 66.45; H, 4.03; N, 4.99.

4.5.3. 3-(**4**-**Bromobenzyl**)-**2**-chloro-quinoline (Table 1, 6, entry 3). Yield: 0.18 g, 85%, as a yellow solid; mp 144–146 °C; R_f (5% EtOAc/hexane): 0.61; ¹H NMR (300 MHz, CDCl₃): δ 4.19 (s, 2H, CH₂), 7.13 (d, 2H, *J*=8.3 Hz, ArH), 7.48 (d, 2H, *J*=8.3 Hz, ArH), 7.52–7.57 (m, 1H, ArH), 7.69–7.75 (m, 2H, ArH), 7.81 (s, 1H, ArH), 8.03 (d, 1H, *J*=8.3 Hz, ArH); ¹³C NMR (75 MHz, DMSO- d_6): δ 37.3, 119.4, 125.9, 126.1, 126.9, 128.8, 129.6, 130.6, 135.8, 136.9, 145.3, 150.0; mass (ES⁺): *m/z* 332.3 (M⁺+1), 334.2 (M⁺+3). Anal. Calcd. for C₁₆H₁₁BrClN requires: C, 57.77; H, 3.33; N, 4.21. Found: C, 57.75; H, 3.31; N, 4.19.

4.5.4. 3-(4-Bromobenzyl)-2,6-dichloro-quinoline (Table 1, 6, entry 6). Yield: 0.15 g, 82%, as yellow solid; mp 151 °C; R_f (5% EtOAc/hexane): 0.58; ¹H NMR (300 MHz, CDCl₃): δ 4.17 (s, 2H, CH₂), 7.11 (d, 2H, *J*=8.3 Hz, ArH), 7.48 (d, 2H, *J*=8.3 Hz, ArH) 7.60–7.64 (m, 3H, ArH), 7.68–7.70 (m, 1H, ArH), 7.93 (d, 1H, *J*=9.0 Hz, ArH); ¹³C NMR (75 MHz, DMSO- d_6): δ 37.3, 119.6, 124.6, 126.7, 128.5, 129.6, 129.7, 130.7, 131.7, 132.4, 135.4, 135.8, 143.6, 150.3; mass (ES⁺): m/z 368.2 (M⁺+1), 370.2 (M⁺+3). Anal. Calcd. for C₁₆H₁₀BrCl₂N requires: C, 52.35; H, 2.75; N, 3.82. Found: C, 52.59; H, 2.97; N, 4.11.

4.5.5. 2-Chloro-3-(2-chlorobenzyl)-6-fluoro-quinoline (Table 1, 6, entry 8). Yield: 0.19 g, 68%, as yellow solid; mp 109–111 °C; R_f (5% EtOAc/hexane): 0.67; ¹H NMR (300 MHz, CDCl₃): δ 4.35 (s, 2H, CH₂), 7.19–7.22 (m, 1H, ArH), 7.28–7.33 (m, 3H, ArH), 7.43–7.50 (m, 2H, ArH), 7.58 (s, 1H, ArH), 8.00–8.05 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 35.5, 109.0, 109.3, 118.6, 118.9, 126.0, 127.4, 128.7, 129.4, 130.0, 131.2, 133.3, 134.3, 135.7, 157.7, 161.0; mass (ES⁺): m/z 306.2 (M⁺+1), 308.2 (M+3); HR-EIMS calculated for C₁₆H₁₀Cl₂FN: 305.0174. Found: 305.0175.

4.5.6. 3-(**4**-Bromobenzyl)-2-chloro-6-fluoro-quinoline (Table 1, 6, entry 9). Yield: 0.14 g, 89%, as a yellow solid; mp 138–140 °C; R_f (5% EtOAc/hexane): 0.62; ¹H NMR (300 MHz, CDCl₃): δ 4.20 (s, 2H, CH₂), 7.13 (d, 2H, J=8.2 Hz, ArH), 7.34–7.38 (m, 1H, ArH), 7.44–7.50 (m, 3H, ArH), 7.75 (s, 1H, =CH), 7.99–8.01 (m, 1H, ArH); ¹³C NMR (50 MHz, CDCl₃): δ 38.9, 110.5, 111.0, 120.3, 120.8, 121.2, 128.4, 131.1, 132.3, 133.8, 147.1, 137.7, 144.0, 151.0, 158.6, 163.6; mass (ES⁺): m/z 350.2 (M⁺+1), 352.2 (M⁺+3); HR-EIMS calculated for C₁₆H₁₀BrClFN: 348.9669. Found: 348.9676.

4.5.7. 3-Benzyl-6-bromo-2-chloro-quinoline (Table 1, 6, entry 10). Yield: 0.51 g, 97%, as a white solid; mp 111–112 °C; R_f (5% EtOAc/hexane): 0.51; ¹H NMR (300 MHz, CDCl₃): δ 4.23 (s, 2H, CH₂), 7.24–7.28 (m, 2H, ArH), 7.31–7.41 (m, 3H, ArH), 7.66 (s, 1H, ArH), 7.72–7.75 (m, 1H, ArH), 7.84–7.88 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 37.8, 119.6, 125.7, 127.2, 127.6, 128.0, 128.5, 132.0, 133.1, 135.6, 136.3, 143.7, 150.7; mass (ES⁺): *m/z*

332.2 (M⁺+1), 334.2 (M⁺+3); HR-EIMS calculated for $C_{16}H_{11}BrClN$: 330.9763. Found: 330.9769.

4.5.8. 2,6-Dichloro-3-(2-fluorobenzyl)-quinoline (Table 1, 6, entry 18). Yield: 0.31 g, 97%, as a white solid; mp 93–94 °C; R_f (5% EtOAc/hexane): 0.5; ¹H NMR (300 MHz, CDCl₃): δ 4.25 (s, 2H, CH₂), 7.10–7.17 (m, 2H, ArH), 7.20–7.33 (m, 2H, ArH), 7.60–7.63 (m, 1H, ArH), 7.70 (s, 2H, ArH), 7.94 (d, 1H, *J*=9.0 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 31.1, 114.2, 114.6, 123.2, 124.7, 126.7, 127.8, 128.4, 129.6, 130.0, 130.1, 131.5, 1355.6, 150.3, 158.3, 161.5; mass (ES⁺): *m*/*z* 306.3 (M⁺+1), 308.3 (M⁺+3); HR-EIMS calculated for C₁₆H₁₀Cl₂FNO: 305.0174. Found: 305.0178.

4.5.9. 2-Chloro-6-fluoro-3-(2-fluorobenzyl)-quinoline (**Table 1, 6, entry 19).** Yield: 0.33 g, 81%, as a white solid; mp 85–87 °C; R_f (5% EtOAc/hexane): 0.5; ¹H NMR (300 MHz, CDCl₃): δ 4.26 (s, 2H, CH₂), 7.12–7.17 (m, 2H, ArH), 7.22–7.36 (m, 3H, ArH), 7.45–7.48 (m, 1H, ArH), 7.75 (s, 1H, ArH), 7.99–8.03 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 31.2, 52.4, 115.8, 125.2, 125.4, 125.8, 127.3, 127.8, 128.0, 130.6, 133.2, 134.5, 137.6, 142.9, 159.9, 161.5; mass (ES⁺): m/z 290.3 (M⁺+1), 292.3 (M⁺+3); HR-EIMS calculated for C₁₆H₁₀ClF₂N: 289.0470. Found: 289.0460.

4.6. General procedure for the preparation of compounds 7–9

To a solution of the appropriate 2-chloro-quinoline (1.0 equiv) in dry methanol (10 mL) was added 50% NaOMe (w/v, 10 mL) in methanol and refluxed for 15 min. The solvent was removed in vacuo and the residue was extracted with ethyl acetate (3×50 mL) and water (50 mL). These combined organic fractions were washed with brine (50 mL), dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography using hexanes/ethyl acetate (98-95:2-5, v/v) to furnish the pure compounds in 81-97% yield.

4.6.1. 3-Benzyl-6-bromo-2-methoxy-quinoline (7). Yield: 0.51 g, 97%, as a white solid; mp 82–83 °C (lit. 82 °C)³; R_f (2% EtOAc/hexane): 0.45; ¹H NMR (300 MHz, CDCl₃): δ 4.05 (s, 2H, CH₂), 4.11 (s, 3H, CH₃), 7.25–7.30 (m, 3H, ArH), 7.33–7.37 (m, 2H, ArH), 7.50 (s, 1H, ArH), 7.61–7.76 (m, 3H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 34.8, 52.4, 115.8, 125.2, 125.4, 125.8, 127.3, 127.8, 128.0, 130.6, 133.2, 134.5, 137.6, 142.9, 159.9; mass (ES⁺): m/z 328.2 (M⁺+1), 330.2 (M⁺+3); HR-EIMS calculated for C₁₇H₁₄BrNO: 327.0259. Found: 327.0260.

4.6.2. 6-Chloro-3-(2-fluorobenzyl)-2-methoxy-quinoline (8). Yield: 0.34 g, 87%, as a white solid; mp 87–89 °C; R_f (2% EtOAc/hexane): 0.63; ¹H NMR (300 MHz, CDCl₃): δ 4.08 (s, 2H, CH₂), 4.11 (s, 3H, CH₃), 7.07–7.14 (m, 2H, ArH), 7.22–7.31 (m, 2H, ArH), 7.49–7.53 (m, 2H, ArH), 7.61 (d, 1H, J=2.3 Hz, ArH), 7.77 (d, 1H, J=8.8 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 28.0, 52.4, 114.0, 114.3, 122.9, 124.3, 124.6, 124.8, 127.1, 127.5, 128.0, 130.1, 134.5, 142.6, 158.4, 159.7, 161.6; mass (ES⁺): m/z 302.2 (M⁺+1), 304.2 (M⁺+3); HR-EIMS calculated for C₁₇H₁₃CIFNO: 301.0670. Found: 301.0673.

4.6.3. 6-Fluoro-3-(2-fluorobenzyl)-2-methoxy-quinoline (9). Yield: 0.20 g, 81%, as a white solid; mp 91–93 °C; R_f (2% EtOAc/hexane): 0.43; ¹H NMR (300 MHz, CDCl₃): δ 4.08 (s, 2H, CH₂), 4.11 (s, 3H, CH₃), 7.07–7.14 (m, 2H, ArH), 7.22–7.37 (m, 4H, ArH), 7.57 (s, 1H, ArH), 7.80–7.84 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 28.0, 52.3, 109.1, 114.3, 117.1, 122.9, 124.1, 124.7, 127.1, 127.5, 130.1, 134.7, 141.0, 158.4, 159.4, 161.6; mass (ES⁺): m/z 2863 (M⁺+1); HR-EIMS calculated for C₁₇H₁₃F₂NO: 285.0965. Found: 285.0966.

Acknowledgements

Two of the authors (R.P. and S.M.) acknowledge the financial support from CSIR, N. Delhi in the form of fellowship. This work was supported by the financial grant from DST, N. Delhi.

References and notes

- (a) Cole, S. T.; Alzari, P. M. Science 2005, 306–307; (b) Rubin, E. J. N. Engl. J. Med. 2005, 352, 933–934; (c) Ji, B.; Jarlier, V. Antimicrob. Agents Chemother. 2006, 50, 1558–1560.
- Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H. W. H.; Neefs, J.-M.; Winkler, H.; Gestel, J. V.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. *Science* 2005, 307, 223–227.
- (a) Andries, K. J.; Van Gestel, J. F. E. WO 2005117875, 2005;
 (b) Van Gestel, J. F. E.; Guillemont, J. E. G.; Venet, M. G.; Poignet, H. J. J.; Decrane, L. F. B.; Vernier, D. F. J.; Odds, F. C. U.S. 2005148581 A1, 2005.
- Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. *Tetrahedron* 2005, *61*, 1493–1499. For other references pertaining to the synthesis of quinoline derivatives from Baylis–Hillman chemistry refer to: Madapa, S.; Singh, V.; Batra, S. *Tetrahedron* 2006, *62*, 8740– 8747 and references cited therein.